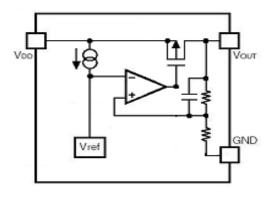

GENERYL DESCRIPTION

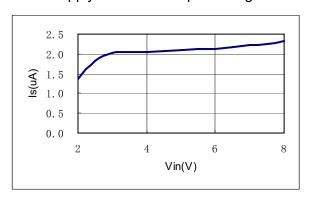
BP6219 series are a group of positive voltage output, high precise, and high PSRR and low power consumption voltage regulator. Voltages are selectable in 100mV steps within a range of 1.2V to 3.6V. It also can be customized on command.


BP6219 series have excellent load and line transient response and good temperature characteristics, which can assure the stability of chip and power system. And it uses trimming technique to guarantee output voltage accuracy within $\pm 2\%$.

BP6219 series are available in SOT-23-3, SOT-23-5, SOT-89-3 and TO-92 packages, which are lead (Pb)- free.

TYPICYL YPPLICYTION

KLOCK DIYGRYM

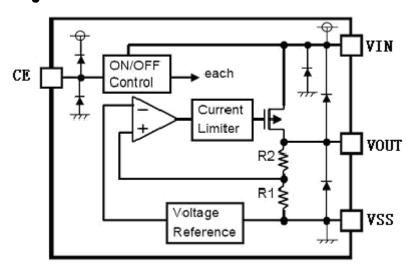

FEYTURES

- Low Quiescent Current: 2uA at 5V
- 60dB PSRR at 100Hz
- Low Output Noise: 44uVRMS
- Low Dropout: 280mV at 150mA load
- Low Temperature Coefficient: ±100ppm/°C
- Excellent Line Regulation: 0.05%/V
- Highly Accurate: ±2%

YPPLICYTIONS

- Reference Voltage Source
- Battery Powered Equipment
- Hand-Hold Equipment
- Wireless LAN
- GPS Receivers

Supply Current vs. Input Voltage


Pin Assignment BP6219Axx

pin assignment No.			D' 1 '1	
SOT23-3	SOT89-3	Symbol	Pins describe	
1	1	Vss	Device ground pins	
2	3	Vout	Output voltage side	
3	2	Vin	Input voltage side	

BP6219Cxx

pin assignment No.		_	D: 1 "	
SOT23-5	SOT89-5	Symbol	Pins describe	
1	4	Vin	Input voltage side	
2	2	Vss	Device ground pins	
3	3	Vce	CE side	
4	1	NC	NULL	
5	5	Vout	Output voltage side	

Block Diagram

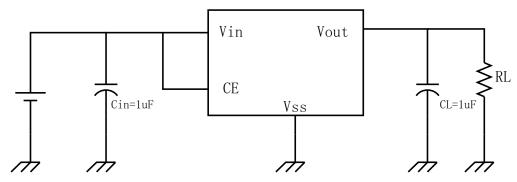
Limit Parameters

Parameter		Symbol	Ultimate Value	Unit	
Vin		V _{IN}	9	V	
Vout		l out	500	mA	
Vout		V_{out}	Vss-0.3 ~ Vout+0.3	V	
PDMAX	SOT23	Pd	300	mW	
	SOT89	Pd	500	mW	
Store temperature		T_{Opr}	-25 ~ +85	$^{\circ}$	
Operating Temperature		T_{stg}	-40 ~ +125	$^{\circ}$	
Welding temperature and time		T_{solder}	260℃, 10s	· · · · · · · · · · · · · · · · · · ·	

Significant Parameter and Operating Characteristic

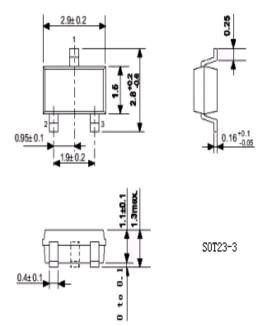
BP6219A/C

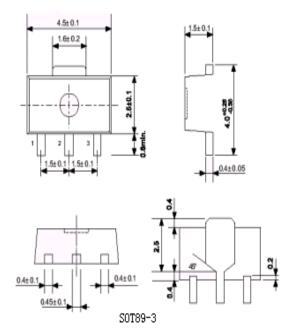
(Vin=Vout+1V,Cin=Cout=1u,Ta=25°C Unless otherwise specified)

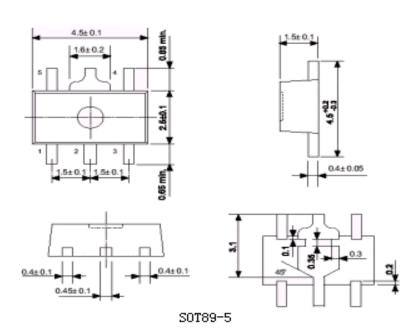

Speciality	Symbol	Condition	Min.	Тур.	Max.	Unit
Output Voltage	V _{OUT} (E) (Note 2)	I _{OUT} =40mA, V _{IN} =Vout+1V	X 0.98	V _{OUT} (T) (Note 1)	X 1.02	V
Input Voltage	V _{IN}				8.0	V
Max. Output Current	I _{OUT} max	V _{IN} =Vout+1V	200			mA
Load Characteristic	ΔV_{OUT}	V _{IN} =Vout+1V, 1mA≤I _{OUT} ≤100mA		30		mV
Dropout Voltage (Note 3)	V_{dif1}	I _{OUT} =100mA		200		mV
	V_{dif2}	I _{OUT} =200mA		400		mV
Quiescent Current	I _{SS}	V _{IN} =Vout+1V		65		μА
Shutdown Current	I _{CEL}	Vce=0V		0.1		μ A
Line regulation	$\Delta V_{OUT} \over \Delta V_{IN} \cdot V_{OUT}$	I_{OUT} =40mA Vout+1V \leq $V_{IN} \leq$ 8V		0.05		%/V
Noiseoutput	en	I _{OUT} =40mA, 300Hz~50kHz		50		uVrms
PSRR	PSRR	Vin= [Vout+1]V +1Vp-pAC I _{OUT} =40mA,f=1kHz		70		dB

Caution:

- 1. $V_{\text{OUT}}(T)$: Specified Output Voltage
- 2. V_{OUT} (E): Effective output voltage (That is, the values show how much the output voltage changes due to a change in the input voltage with the output current remaining unchanged)
- 3. V_{dif} . $V_{IN1} V_{OUT}(E)$


 V_{IN1} (which is the input voltage at the point where the output voltage has fallen to 98% of the output voltage value after VIN was gradually decreased)


TYPICAL APPLICATIONS



BP6219

Package Drawing

